
Copyright © 2011-2022, MCCI Corporation. MCCI, MCCI USB DataPump, MCCI Catena, TrueTask are registered
trademarks of MCCI Corporation. LoRaWAN is a registered trademark of the LoRa Alliance. USB4, USB-C and USB
Type-C are registered trademarks of the USB Implementers Forum. 971001018 Rev H. Contact: sales@mcci.com, or
check our contacts page https://mcci.com/about/contact/.

TrueTask USB / MCCI USB DataPump
Technical Overview

MCCI Corporation, June 2022

Introduction

TrueTask USB is MCCI’s USB software platform for embedded systems. It’s based on the MCCI

USB DataPump (“DataPump”), MCCI’s portable embedded USB framework. This article gives a

technical overview of the DataPump for engineers and technical managers.

The DataPump combines comprehensive USB device support with the industry’s most

thoroughly verified embedded USB host and USB Type-C® stack. Its modular, reentrant design

allows it to be deployed in many ways. It may be used as a stand-alone stack; or it may be used

to augment, supplement, upgrade, or replace existing USB stacks, while maintaining

compatibility with the existing stack.

The modular architecture of the DataPump allows it to scale from the simplest operating

environments to the most complex. In the device stack and the Type C stack, all memory

allocation happens during initialization. The host stack can be configured (for deeply embedded

systems) to allocate all memory during initialization, or to allocate and free memory for device

instance data while the stack is running.

In addition, by careful abstraction and layering, the components can be used independently. In

a dual-role environment, the DataPump device component can be used with the DataPump

host stack or with the native OS host stack.

All MCCI software is designed to serve as a platform for further development. APIs and data

structures are stable from version to version, which means that system software built on the

DataPump can be coded once, then reused as needed.

The careful design and implementation allow the DataPump to be readily deployed without

source modification across a wide range of CPU architectures, USB host, device, and port

controllers, and operating systems. A single code base supports a range of use cases, from USB

1.1 full speed to USB4® products, including Dual Role, Type C, OTG, and USB emulation

applications.

The DataPump is the result of over 25 years of continuous development and refinement. It is

accompanied by a large suite of test tools, regression tests, and development applications. This

mailto:sales@mcci.com
https://mcci.com/about/contact/

MCCI USB DataPump Technical Overview Page 2

ecosystem makes it the strongest engineering solution for supporting multiple USB products

from a common source base.

TrueTask USB is a packaging of select components of the DataPump in a form that is easy to use

in conjunction with select real-time operating systems. The components are pre-ported and

integrated with the RTOS and the target SOC, and delivered as a software component.

TrueTask USB inherits the stable APIs of the DataPump, and so insulates customer software

from variations between hardware platforms, and variations between TrueTask USB releases.

MCCI’s broad protocol support, standards leadership, and technical excellence are recognized

by high-volume consumer product makers around the world, and have made the DataPump

the “gold standard” for trouble-free applications of USB across a product line or throughout a

corporation.

DataPump Components

The DataPump has the following components.

DataPump Port Manager

The DataPump Port Manager consists of the policy managers, finite state machines, and low-

level drivers to support advanced Type C port implementations. The reference port controller

architecture is the USB Type-C Port Controller Specification V2.0, but MCCI’s flexible and robust

implementation allows a variety of register models and a variety of connection strategies,

including direct register access, I2C, SPI, or other indirect means of register access. The finite

state machines used for port control are directly traceable to the reference finite state machines

in chapter 4 of the USB Type-C Specification Release 2.0 and the USB Power Delivery

specifications.

The reference port controller is the Faraday FTCPD210.

Many customers prefer a simple Type C Dual-Role Port implementation, which adds

host/device flexibility without introducing the full scope and complexity (and interoperability

test requirements) of power-delivery communications. MCCI’s base implementation therefore

supports the full range of Type C operation, without introducing Power Delivery

communication over the CC line. However, the architecture directly scales to a full PD

implementation for systems where this is desired.

DataPump Device Stack

The DataPump Device Stack consists of the Device Framework, Device Controller Drivers,

support libraries, and device class protocols.

MCCI USB DataPump Technical Overview Page 3

The Device Framework provides functionality common to all USB devices, including standard

command support, suspend/resume, link-power-management support, composite device

support, multiple device modes, and Microsoft OS Descriptor support.

Low speed, full speed, high speed, USB 3.2 SuperSpeed Gen1 and USB 3.2 Enhanced

SuperSpeed Gen2 are fully supported including 96k Isochronous endpoints, as is USB tunneling

over USB4. Using the DataPump Device stack and a suitable host controller, the MCCI Model

3411 USB Loopback Device can sustain 8 gigabits per second IN and OUT concurrently.

Device Controller Drivers

Device Controller Drivers (DCDs) provide a common, portable, low-level API to the Device

Framework. This API is optimized for high throughput, zero-copy DMA operations.

Over thirty DCDs are available. Notable DCDs include:

• Synopsys DesignWare USB 3.2 “XDCI”. This DCD supports the Synopsys SuperSpeed

device IP. Support is included for streams and USB 3.2 Gen2. Xilinx FPGAs are

supported, as are various Sitara chips from Texas Instruments.

• Synopsys DesignWare USB 2.0 IP. This DCD supports the industry standard Synopsys

high-speed device and OTG IP. Versions 2.6 and later are supported. Depending on the

version, PIO, DMA and scatter-gather DMA are supported. Normal USB and HSIC are

supported. LPM is supported if supported by the hardware. This is the IP block used in

USB-capable STM32 devices, as well as in the ST Telemaco automotive SOCs.

• Synopsys ChipIdea USB2.0 IP. This DCD supports the IP block used in the NXP i.MX6,

the NXP LPC1850, and many other popular SOCs.

• Nvidia Jetson USB 3 gen1 Device Controller.

• Faraday FOTG210 device controller.

• Renesas R-Car3 SS DCI USB 3 gen1 device controller.

• Renesas r8a7795 USB3. This DCD supports the USB 3 superspeed device IP block used

in the Renesas R-Car 3 SoC family

• Renesas ’597. This DCD supports the Renesas high-speed OTG kit part (for lower

volume designs and prototyping) and IP (for SOC applications).

• Mentor Inventra (currently marketed by SiFive). This DCD supports the popular Mentor

MUSBMHDRC high-speed OTG core. A variety of PHY architectures allow support for

common external PHYs. LPM is supported if supported by the hardware.

• Cadence USBHS-OTG-MPD. USB 2.0 device core with advanced DMA, and multi-device

host controller for dual-role and USB On-The-Go applications supporting hubs.

• Cadence USBHS-OTG-SD. USB 2.0 device core with simple DMA. Simplified host

controller supports dual-role device and USB On-The-Go applications that don’t involve

hubs or compound devices.

• Cadence USB 3.0 Device Controller, with or without SuperSpeed support.

MCCI USB DataPump Technical Overview Page 4

DataPump Device Class Protocols

Device Class Protocol modules provide the support for device classes. MCCI offers over 20

device class protocols. All protocols can be freely combined to form composite multi-function

devices, and to create sophisticated multi-mode devices.

• Audio Class 1.0 and 2.0, including asynchronous feedback endpoint support

• CDC (Communications Device Class) 1.2 Wireless Mobile Communication subclass

(WMC) for multi-function 2.5G and 3G handsets

o CDC WMC Abstract Control Model (ACM), for traditional modems and modem

emulation

o CDC WMC Device Management

o CDC WMC OBEX (Object Exchange)

o CDC WMC MDLM (debug ports, vendor specific functions, etc.)

• Abstract NIC family of virtual NICs over USB, with support for:

o CDC ECM (Ethernet Control Model), for low throughput Ethernet-like

networking, targeting cable modems and network bridges

o CDC EEM (Ethernet Emulation Model), targeting accessories and local

peripheral networking

o CDC NCM (Network Control Model), for high throughput Ethernet-like

networking

o Microsoft RNDIS, for networking applications targeting Microsoft Windows

systems

• Device Firmware Update (DFU) 1.1, for firmware update over USB

• Generic class (Vendor Specific Class), for implementing USB device behavior outside the

DataPump

• Human Interface Device (HID) 1.1

• Mass Storage Bulk-Only Transport. This protocol is used both for read/write storage

applications, and for CD-ROM.

• MCCI Loopback, for test and performance evaluation

• MCCI Virtual Serial Port (VSP), for migrating RS-232 devices to USB

• Mobile Broadband Interface Module (MBIM) 1.0

• Network Control Model (NCM) 1.0

• Still Image Class

• USB Attached SCSI (UAS) 1.0

• Video Class (UVC) 1.1 and 1.5, including multiple streams per function, bulk and

isochronous data transfers, and Microsoft extensions.

MCCI USB DataPump Technical Overview Page 5

DataPump Device Class Applications

Building on the Still Image Class implementation, MCCI offers PTP, PictBridge and Media

Transport Protocol implementations. These implementations include a database suitable for

removable media, and the software for automatic media file discovery and indexing.

DataPump Host Stack

The DataPump host stack, like the device stack, consists of the core functionality (“USBD”), host

controller drivers (HCDs), and class drivers.

DataPump USBD

The DataPump USBD manages and operates the USB bus, including translating USBDI requests

into the simpler commands used by host controller drivers, pipe management, default pipe

management, bandwidth allocation, abstract scheduling for periodic traffic, and class driver

management and matching.

Low speed, full speed, high speed, USB 3.2 Gen 1, and Gen 2 are fully supported, including 96k

Isochronous transfers. Speeds of 8 Gbps IN + 8 Gbps OUT can be sustained concurrently on

gen2 platforms with capable hardware.

Host Controller Drivers

Host Controller Drivers (HCDs) implement a common, portable, low-level API that is used by

the USBD to access the physical Host Controller Interface (HCI). Like the DCD API, the HCD

API is optimized for high throughput, zero copy DMA operations.

The DataPump HCD architecture has several unusual features. HCDs can run “stand alone”,

without a USBD. MCCI’s “HCDVT” tool uses this feature to perform unit-testing of HCDs and

HCIs without the limitations imposed by USBD.

Here are some of the HCDs available for the DataPump host stack:

• xHCI. This HCD supports any host controller conforming to the xHCI 0.96, 1.0 or 1.1

specifications. It has been qualified with Intel, Renesas, Fresco Logic, TI, Asmedia,

Marvell, and Synopsys DesignWare cores.

• EHCI. This HCD supports any host controller conforming to the EHCI specification. It

has been qualified with Intel, NXP, FTDI, Faraday, and Renesas platforms. It supports

use with a separate OHCI companion controller, or with transaction translators

embedded in the root hub.

• OHCI. This HCD supports any host controller conforming to the OHCI specification. It

has been qualified with Renesas platforms.

MCCI USB DataPump Technical Overview Page 6

• Synopsys DesignWare USB 2.0 IP. This HCD supports the Synopsys DesignWare high-

speed USB host IP running in host mode, either as part of an OTG core or in a fixed host

configuration. Depending on the HCI version, PIO, buffer DMA and scatter-gather

DMA are supported. Transaction Translators are fully supported, to allow use of low-

and full-speed devices behind high-speed hubs. High-bandwidth isochronous and

interrupt pipes are fully supported, which allows use of standard PC webcams. It also

includes support for the DWC_OTG core configured as a High-Speed Inter-Chip (HSIC)

USB host. This HCD has been qualified on the Raspberry Pi with Windows 10 (32 and

64-bit), and on a variety of STM32 processors.

• Mentor Inventra IP. This HCD supports the Mentor Inventra core running as a

dedicated USB host, or as part of an OTG device. PIO and external DMA are supported.

• Renesas ’597. This HCD supports the Renesas ’597 running as a dedicated host, or as an

OTG device in host mode. It also supports the equivalent Renesas IP as part of an SOC.

PIO or external DMA is supported.

A key part of the HCD architecture is the “HCDkit” library. This library provides a framework

for “typical” host controller interfaces, including such functionality as a simulated root hub

device and routines for managing scheduling of periodic transfers for HCIs that require

software assistance.

DataPump Host Class Drivers

MCCI offers the following class drivers for the host stack.

• Hub driver – this is the only mandatory driver for the system. In restricted resource

environments, the maximum hub depth can be pre-configured. This driver is normally

configured to support transaction translators, however in full-speed only systems or

HSIC systems with no embedded transaction translators, this support may be omitted.

• Composite driver – supports composite devices by dividing the device up into multiple

virtual functions, which then match regular class drivers. This is only used when the

host stack is configured as a native or hybrid stack.

• Mass Storage – these drivers support normal mass storage devices, for use when the

host stack is configured as a native or hybrid stack.

• HID keyboard and mouse

• Abstract NIC (ECM, NCM, EEM)

• CDC ACM driver (for serial ports and modems) – in addition to connecting to any CDC

ACM modem, supports Microchip and Holtek CDC ACM USB-serial adapters, and

Linux USB device gadget ACM ports.

• Silicon Labs CP210x driver (for virtual serial ports)

• Generic Driver

• Audio Class 1

• Audio Class 2

MCCI USB DataPump Technical Overview Page 7

• Video Class 1.0, 1.1 and 1.5

• ASIX USB 2.0 and USB 3 USB-to-Ethernet adapters

• Null Driver (for OS emulation)

Common Libraries

The common libraries for the DataPump environment include a rich set of primitives that

simplify development.

• The DataPump object system provides a consistent behavior for structures that are

registered with the system. Objects are named and discoverable. A standard message

system allows objects to implement, inherit, and delegate abstract messaging services.

• Abstract memory allocators model memory pools (which may be implemented by the

operating system or by library code in the DataPump working with a fixed amount of

pre-allocated memory). Working with preallocated memory allows for “zero surprise”

design; working with the operating system’s allocators allows for a variable memory

footprint that grows based on usage profile.

• Safe memory and string functions allow for runtime buffer overrun prevention.

• The abstract annunciator system allows multiple clients to register with event producers

inside the stack, without being aware of the details of how the events are plumbed.

• A comprehensive debug logging system allows for a variety of approaches to runtime

sequence-of-event recording.

• A compact, portable UTF8 library allows handling of Unicode strings in the common

situations that arise for USB applications.

Operating System Integrations

MCCI offers a variety of pre-packaged operating system support packages, including:

• os/none – this is an MCCI nano-kernel that provides exactly and only the basic services

needed for running the DataPump “on bare iron” without an operating system. It

essentially provides an interrupt abstraction layer, hardware initialization services, and

an event loop.

• Windows kernel – the DataPump host and device stacks can be embedded into WDM

drivers. The host stack is provided with wrappers that completely emulate the standard

Windows USB host stack, allowing use of standard Microsoft and third-party class

drivers. The device stack uses MCCI proprietary APIs to expose the upper edges of the

class protocols to user-mode applications.

• Green Hills INTEGRITY OS – special IODevices provide mediated access to registers

from the kernel. The rest of the stack (HCDs, DCDs, protocols) run in user mode as part

of the “TrueTask USB server”. Client libraries link into customer address spaces to

provide access to USB resources via INTEGRITY Connections.

MCCI USB DataPump Technical Overview Page 8

• FreeRTOS, SafeRTOS, etc. – the DataPump is integrated as a task, communicating with

clients using shared memory or classic device driver techniques.

• RTX – the DataPump is integrated as a task, communicating with clients using shared

memory or classic device driver techniques. USB-UART drivers are integrated as CMSIS

drivers to allow USB UARTs to be used interchangeably with traditional UARTs. Other

drivers are integrated using MCCI’s reentrant techniques, with APIs that mirror the

standard RTX power management APIs.

• WindRiver VxWorks – the DataPump is integrated as a task, communicating with clients

using a DataPump event queue and VxWorks semaphore.

• Linux kernel – the DataPump host and device stacks can be embedded into Linux kernel

drivers, as loadable modules. The host stack is provided with wrappers that completely

emulate the standard Linux USB host stack, while also allowing use of high-

performance zero-copy MCCI drivers. The device stack is used with the MCCI

DataPump native device class protocol implementations.

• Azure OS (ThreadX) – the DataPump is integrated as a service task, communicating

with clients using shared memory or classic device driver techniques.

• MQX – the integration is like that for ThreadX

• µItron – the DataPump is integrated as a service task, communicating with clients using

messages and event flags.

• RTEMS – the integration is integrated as a service task, communicating with clients

using shared memory or classic device driver techniques.

• OSE – the DataPump is integrated as one or more OSE tasks, which communicate by

clients using OSE signals (messages).

MCCI can readily port the DataPump to proprietary environments.

MMUs and multiple address spaces are represented by associating a “handle” with each buffer

pointer. Handles are opaque to DataPump code, but are used by the operating system layer to

record such things as MDLs (for Windows kernel-mode drivers), or signal buffer pointers (for

OSE). Buffers without handles are treated as internal kernel-mode buffers. The handle approach

also allows for easy migration to IOMMUs in hardened environments.

CPU and Compiler Support

MCCI supports a wide range of 32-bit and 64-bit CPUs, operating in either big- or little-endian

mode. Endianness may be different for register accesses and DMA than for normal CPU

operation, and requires no C compiler extensions.

Supported architectures include:

• ARM (32-bit, Thumb, and AARCH64)

• Intel (32-bit and 64-bit)

MCCI USB DataPump Technical Overview Page 9

• RISC-V (32-bit and 64-bit)

• MIPS (32-bit and 64-bit)

• Sparc

• ARC

• Tensilica

Supported SOC implementations include:

• STM32

• Microchip SAMD

• Nvidia Jetson Tegra X1

• Renesas R-Car2 and R-Car3

• TI OMAP6 and Sitara

• NXP i.MX6 and i.MX7

• NXP PLC1850

• Xilinx Zynq UltraScale+ FPGAs (reference platform: ZCU106 or Ultra96-V2 boards)

Validation Tools

To help MCCI and MCCI customers to validate systems built with the DataPump, MCCI has

created several software and hardware tools, including:

• Catena systems, including low-, full-, and high-speed test devices and hosts.

• The MCCI 3141 USB4™ Switch, and the MCCI 2101, 3101, 3102, and 3201 USB

Connection Exercisers, used for automated plug/unplug testing of devices.

• The MCCI 3501 Type-C SuperMUTT, designed for host system API testing.

• The MCCI 3411 Gen2 Loopback Device, which enables automated performance testing

at up to 16 Gbps aggregate bandwidth (8 Gbps IN and 8 Gbps OUT) as well as 96k

Isochronous testing when using USB 3.2 gen2 speeds.

Build System and Build Tools

The DataPump is delivered with a complete build system that works on Windows or Linux, 32

bit or 64 bits. The build system includes the following tools.

• “mccimake” is a version of BSD make, as enhanced by MCCI for cross-platform Makefile

portability

• “usbrc” is the USB resource compiler. It verifies, maps, and translates high-level

descriptions of USB devices into the concrete descriptors and matching endpoint

assignments for the DCI being used in the target system.

MCCI USB DataPump Technical Overview Page 10

The build system treats the source tree as “read only”, and integrates readily with OS-specific

build systems. For example, the Windows version of the USB 3 host stack is built by creating the

DataPump libraries, then building drivers using build.exe in the normal way.

Documentation

• User Guides

• Application Notes

• Test and Verification Procedures

• Detailed technical implementation documentation, in the form of CHM files.

• Source code, which averages more than one line of documentation commentary per line

of code (as measured by the software metric tool CCCC).

Architectural Overview

The simplest DataPump device architecture is shown in Figure 1. The USB device hardware is

modeled as a USB Device Controller Interface (DCI), which is controlled by a Device Controller

Driver (DCD). Because USB transceiver control is often quite tricky in embedded systems, the

transceiver (PHY) is explicitly modeled by a transceiver API. (Modeling the PHY also allows

simple coordination of “car kit”, battery charging, and other features that multiplex non-USB

signaling over the USB connector.) The DCD is in turn controlled by the DataPump Device

Framework, which in principle supplies all the chapter 9 functionality. (Some DCIs provide

some of the chapter 9 functionality in hardware; in such cases, the DataPump Device

Framework simply shadows the operations that are being performed by the DCI.)

The DCD does not implement any higher-level USB knowledge; that functionality lives in the

DataPump Device Framework and the class protocol modules. DataPump Device Framework

functions do not change based on the function being performed by the device. Rather, the

function and configuration of the stack is driven (at the chapter 9 level) by the descriptors; and

the provision of class protocols is driven by the “application initialization tables”.

Modules in the DataPump programming environment are coded using a set of primitives and

APIs that are independent of the native operating system. A simple object dictionary allows

internal protocol instances (and external clients) to dynamically discover objects within the

DataPump environment. A general-purpose messaging system allows external clients to send

control messages to any of the indicated API points within the DataPump. This allows native

OS management facilities (for example) to control the transceiver, to start/stop the USB device

subsystem, to register for and to receive notifications from the any of the layers within the

DataPump, all without having detailed knowledge of any of the internal data structures of the

DataPump, and without having direct access to the memory being used by the DataPump.

Any USB device must have a static set of descriptors. The DataPump allows these descriptors to

vary over time, but it requires that the set of device and configuration descriptors be set before

http://cccc.sourceforge.net/

MCCI USB DataPump Technical Overview Page 11

beginning device operation. While initializing, the DataPump then builds data structures that

model the device’s topology, by examining the descriptors. Finally, it scans the descriptors and

notifies each of the provisioned protocol modules, which in turn bind themselves to

configurations, interfaces and endpoints, using common code provided by the DataPump

framework.

MCCI USB DataPump Technical Overview Page 12

OS-Specific Adapation

OS-Specific Adapation

DataPump Portable Environment

Device Class Protocol #2

DataPump API

DataPump Device
Framework (Chapter 9)

DCD API

Device Class Protocol #1

Device Controller Driver
(DCD)

Descriptors

Application Initialization
Tables

PHY API

Transceiver (PHY) Driver

Platform API

Platform Abstraction
Layer

Base OS facilities (HAL, etc)

USB Device Controller
Interface Hardware (DCI)

Device Register Model

Class-Specific API

...

Class-Specific API

API translation code API translation code

Native OS facility Native OS facility

As many device class
protocols may be
instantiated as needed to
implement the required
device features

Common Code and Object
Directory

Figure 1. DataPump Device Architecture

(In most cases, the actual “examination of descriptors” is done at compile time by a special tool

called “USBRC” – but the architecture of the DataPump also allows this to be done at run time,

MCCI USB DataPump Technical Overview Page 13

if desired. Using USBRC allows a much larger number of consistency checks to be done at

compile time, and allows for complex and correct mapping onto the limited hardware found in

most SOCs. After parsing the description of the device, USBRC generates the actual descriptors

to be used, and the initialization code, as C source code.)

After initialization, device class protocols work primarily with UDATASTREAM structures.

These structures model active endpoints, abstracting alternate settings and alternate

configurations that may allow the application to deal with logical data paths. For example, a

bulk endpoint has a different maximum packet size in full speed mode than it does in high-

speed. UDATASTREAMs allow the class protocol modules (and external clients) to deal with

devices of arbitrary complexity in an extremely simple and intuitive way.

High-volume device data transfer uses the same techniques used with USB host stacks. The

client prepares a buffer, or a scatter-gather list, then builds a USB data request (called a

UBUFQE). The client then submits the UBUFQE for asynchronous processing. When the request

is complete, the DataPump calls a client-supplied callback function to complete processing. The

structure and APIs are optimized for DMA-based DCIs. Because of the short code paths, and

the copy-free architecture, data transfers normally operate at bus speed.

The native operating system is modeled through an abstraction layer. This layer has two

primary responsibilities: to model interrupts for the DCD, and to provide an “event dispatch”

facility. In addition, it provides bindings for the normal OS services (such as allocating and

freeing memory).

The DataPump is essentially singly threaded, although it operates well in symmetric

multiprocessing (SMP) environments such as the Windows kernel. USB devices, at the USB

level, have limited concurrency available, and memory interlocks are expensive; so not much

concurrency is sacrificed. DataPump computations are event-driven and asynchronous, rather

than a blocking and synchronous, so if a second CPU offers load to the USB while the first CPU

is working, the work is simply queued, and the second CPU is immediately released for other

work.

The DataPump device stack may be used in conjunction with the TrueTask USB host stack.

Figure 2 shows the DataPump configured to support USB On-The-Go.

The diagram has been slightly reorganized compared to Figure 1, to make it more concrete. We

show the DataPump configured for WMC and Vendor-Specific device functions (either as a

composite or multi-configuration device); and the host stack configured to support HID and

Mass Storage class devices.

MCCI USB DataPump Technical Overview Page 14

DataPump
USB Device

Modules

DataPump
USB Host
Modules

DRP
Modules

HID Class Driver API

HID Host Class Driver

USBDI API

DataPump USBDI

WMC Class Protocols (CDC
ACM virtual comm port)

DataPump Device
Framework (Chapter 9

functionality)

C
o

m
m

o
n

 D
at

a
P

u
m

p
 c

o
d

e

DataPump HCD API

Host Controller Driver
(HCD)

Device Controller Driver
(DCD)

USB Host/Device Controller

DataPump WMC API

DataPump API

DataPump DCD API

USB Platform Layer

OS-specific Code

MCCI Code
(DataPump)

MCCI Code
(Embedded
Host/Type C)

Hardware

Client HID driver (for
Keyboard)

Client COMM APIs

API points

DataPump Platform API

Object Discovery API

Vendor-Specific Class
Transport

VSC Function API

Client interface for VSC (or
MCCI Generic Data
Transport wrapper)

Mass Storage Class Driver

MSC Class Driver API

Lower edge of client file
system

Descriptors, from
USBRC

Object
Directory

Additional
Protocols as
needed

DataPump PHY control
(Type C, OTG, etc.)

DataPump Type-C Port
Management (HW

Independent)

Type-C Policy API

Client Port Policy and
Annunciation Code

DCDs can be
substituted as
needed

Driver
Directory /

TDL

DataPump PHY API

DataPump Transceiver API

DataPump USB Transceiver
Control

Figure 2. DataPump Type-C Dual-Role Architecture

MCCI USB DataPump Technical Overview Page 15

DataPump Coding Conventions

MCCI’s coding style has several features that contribute to portability.

• ANSI C 89 with selected C 99 features

• No use of global or static variables (global and static constants are, of course, allowed)

• No conditional compiles in C files (except for the usual checked/free configuration)

• Dynamic initialization and configuration

• Library-based

• Abstract types for portability

• Avoidance of type casts

• Type cloaking allows DataPump code to be integrated cleanly with any operating

system.

• API versioning discipline provides stable APIs. Ensures strict compatibility for client

source code as APIs evolve to meet new requirements.

• Minimal duplication of code

Licensing and re-deployment options

The DataPump product was designed as an OEM (“white label”) software package, to allow our

customers the most flexibility. It can be licensed in several forms.

A full source license is available, which gives licensees the most flexibility in adapting the

DataPump to their needs. This approach may also simplify debugging.

The DataPump can also be licensed as header files plus libraries. The DataPump is not

configured at compile time, so this license gives full functionality. Source licensees who need to

sublicense the DataPump can also take advantage of this mode of operation for their

sublicensees.

In certain configurations, the DataPump can be delivered as a fully pre-compiled executable.

For example, when used as a Windows-compatible host stack, the DataPump is fully compiled

and pre-configured. The DataPump device stack can be similarly pre-configured.

Modes of Integration

When integrating the DataPump into an existing system, MCCI offers the following approaches:

Native stack

Configured in this mode, the DataPump serves as a complete USB subsystem. Clients use the

MCCI class protocols and APIs directly. This approach is the most efficient.

MCCI USB DataPump Technical Overview Page 16

Emulation stack

Configured in this mode, the DataPump provides core USB functionality, but class protocols are

implemented by client code outside the DataPump, typically enabling existing OS-native class

drivers to be used without changes. The most typical example of this is using the DataPump in

the Windows kernel for USB 3 host support.

Hybrid

When configured as a hybrid stack, the DataPump uses MCCI class protocol and class driver

modules for certain key functions, and uses client code for the remaining functions. An example

might be to use the MCCI NCM class driver for high performance zero-copy scatter/gather

support, and to use OS-native drivers for other, less performance-critical functions.

Special Applications

Microsoft OS Descriptors

The DataPump device stack fully supports the Microsoft OS descriptors that facilitate driverless

installation on Windows 10 and 11.

Device Firmware Update

The DataPump device stack includes standard support for the Device Firmware Update

(“DFU”) protocol. This allows firmware update using standard tools on Windows, Linux and

macOS. Vendor-specific firmware update can also be implemented using CDC ACM comm

ports, the vendor-specific class, or mass storage.

The DataPump host stack allows firmware update over Mass Storage. In mass storage update,

the user attaches a properly formatted thumb drive; the application notices the drive and copies

the firmware.

When combined with MCCI’s trusted bootloader, ec25519 code signing and reliable system

update can be implemented from a variety of sources.

Network support (Abstract NIC API)

MCCI’s support for network drivers is extensive. The API upper edge allows zero copy, gather

on write for very fast throughput. In addition, the same API is exported by host and device

implementations allowing use of a single integration for dual-role products. The same API is

used for NCM, EEM, ECM and RNDIS (device only) support. It’s also used with the ASIX USB 2

88772A/B/C 100Base-T Ethernet devices, and the ASIX USB 3 88179 gigabit Ethernet devices.

MCCI USB DataPump Technical Overview Page 17

CarPlay®/MirrorLink®

MCCI’s high-performance NCM support, combined with the DataPump’s flexible

implementation style, makes it easy to implement CarPlay and MirrorLink hosts and devices. In

addition to supporting NCM, MCCI also offers the Audio and vendor-specific drivers needed

for a complete solution.

About MCCI

MCCI Corporation (www.mcci.com) is the USB software provider of choice to the world’s

leading companies. The MCCI USB DataPump device stack and TrueTask USB host stacks are

the most comprehensive stacks available, covering the full spectrum of USB applications. In

addition to its embedded software for USB, MCCI offers a comprehensive range of USB host

class drivers for Windows and macOS, and manufactures specialized test equipment for USB

development. MCCI is also a leader in open-source software and hardware development for

LoRaWAN® technology long-range wireless IoT networks in the United States, and is the

primary corporate sponsor for The Things Network New York. Founded in 1995, MCCI is

privately held. It has development offices in Ithaca, NY, New York City, Chennai, India, and

additional presence in Tokyo, Seoul, and Taipei.

Contact: sales@mcci.com Tel: +1-607-277-1029 x105

Twitter: @MCCI

	Introduction
	DataPump Components
	DataPump Port Manager
	DataPump Device Stack
	Device Controller Drivers
	DataPump Device Class Protocols
	DataPump Device Class Applications
	DataPump Host Stack
	DataPump USBD
	Host Controller Drivers
	DataPump Host Class Drivers
	Common Libraries
	Operating System Integrations
	CPU and Compiler Support
	Validation Tools
	Build System and Build Tools
	Documentation

	Architectural Overview

